Small interfering RNA urokinase silencing inhibits invasion and migration of human hepatocellular carcinoma cells.
نویسندگان
چکیده
The serine protease urokinase-type plasminogen activator (u-PA) is involved in a variety of physiologic and pathological processes; in particular, u-PA mRNA is up-regulated in human hepatocellular carcinoma (HCC) biopsies and its level of expression is inversely correlated with patients' survival. To determine the role of u-PA in the invasiveness properties of HCC, we successfully down-regulated u-PA by RNA interference (RNAi) technology, in an HCC-derived cell line at high level of u-PA expression. RNAi is a multistep process involving generation of small interfering RNAs (siRNA) that cause specific inhibition of the target gene. SKHep1C3 cells were transfected with a U6 promoter plasmid coding for an RNA composed of two identical 19-nucleotide sequence motifs in an inverted orientation, separated by a 9-bp spacer to form a hairpin dsRNA capable of mediating target u-PA inhibition. Stable transfectant cells showed a consistently decreased level of u-PA protein. In biological assays, siRNA u-PA-transfected cells showed a reduction of migration, invasion, and proliferation. In conclusion, u-PA down-regulation by RNAi technology decreases the invasive capability of HCC cells, demonstrating that stable expression of siRNA u-PA could potentially be an experimental approach for HCC gene therapy.
منابع مشابه
مهار بیان ژن GFP به وسیله تداخل RNA (RNAi) در دودمان سلولی کارسینومای جنینی P19
Introduction: RNA interference (RNAi) is a phenomenon of gene silencing that uses double-stranded RNA (dsRNA), specifically inhibits gene expression by degrading mRNA efficiently. The mediators of degradation are 21- to 23-nt small interfering RNAs (siRNA). The use of siRNAs as inhibitors of gene expression has been shown to be an effective way of studying gene function in mammalian cells. Ai...
متن کاملDownregulation of galectin-3 causes a decrease in uPAR levels and inhibits the proliferation, migration and invasion of hepatocellular carcinoma cells.
Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related mortality worldwide. Galectin-3 (Gal-3), a multifunctional β-galactoside-binding protein, is highly expressed and associated with the prognosis of HCC. However, the functions of Gal-3 in HCC cells are not fully understood. To address the function of Gal-3 in HCC cells, we used small interfering RNA (siRNA) to knock ...
متن کاملSilencing of rhomboid domain containing 1 to inhibit the metastasis of human breast cancer cells in vitro
Objective(s): A growing body of evidence indicates that rhomboid domain containing 1 (RHBDD1) plays an important role in a variety of physiological and pathological processes, including tumorigenesis. We aimed to determine the function of RHBDD1 in breast cancer cells. Materials and Methods: In this study, we used the Oncomine™ database to determine the expression patterns of RHBDD1 in normal a...
متن کاملRNAi-mediated downregulation of urokinase plasminogen activator and its receptor in human meningioma cells inhibits tumor invasion and growth.
In recent years, RNA interference (RNAi) has emerged as an effective method to target specific genes for silencing. Several groups are actively exploring the use of small interfering RNA (siRNA) for therapeutic applications to treat cancer. Our previous studies have demonstrated the inhibition of various proteases, including serine proteases, cysteine proteases and matrix metalloproteases, via ...
متن کاملDownregulation of Kinesin Spindle Protein Inhibits Proliferation, Induces Apoptosis and Increases Chemosensitivity in Hepatocellular Carcinoma Cells
Background: Kinesin spindle protein (KSP) plays a critical role in mitosis. Inhibition of KSP function leads to cell cycle arrest at mitosis and ultimately to cell death. The aim of this study was to suppress KSP expression by specific small-interfering RNA (siRNA) in Hep3B cells and evaluate its anti-tumor activity. Methods: Three siRNA targeting KSP (KSP-siRNA #1-3) and one mismatched-siRNA (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular cancer therapeutics
دوره 3 6 شماره
صفحات -
تاریخ انتشار 2004